Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Osteopontin counters human immunodeficiency virus type 1-induced impairment of neurite growth through mammalian target of rapamycin and beta-integrin signaling pathways.

Identifieur interne : 000265 ( Main/Exploration ); précédent : 000264; suivant : 000266

Osteopontin counters human immunodeficiency virus type 1-induced impairment of neurite growth through mammalian target of rapamycin and beta-integrin signaling pathways.

Auteurs : Mathilde Calvez [France] ; George Hseeh [États-Unis] ; Simon Benzer [États-Unis] ; Amanda M. Brown [États-Unis]

Source :

RBID : pubmed:30758811

Descripteurs français

English descriptors

Abstract

Despite the fact that human immunodeficiency virus type 1 (HIV-1) does not enter or replicate in neurons, its infection of a subset of resident brain glia cells (microglia and astrocytes) induces via disparate mechanisms, dysregulation of glutamate metabolism, neurotoxicity, and inflammation. Antiretroviral therapies suppress viral load, but cellular activation and release of proinflammatory factors, some of which is likely related to viral reservoirs, continue to promote a microenvironment that is injurious to neurons. However, the molecular mechanisms remain to be identified. Osteopontin (OPN) is a proinflammatory cytokine-like, extracellular matrix protein that is elevated within the brain and CSF in several neurodegenerative disorders, including HIV-associated cognitive disorder. However, the impact of elevated OPN on neuronal integrity and function in HIV-infected individuals who exhibit cognitive dysfunction remains unknown. In this study, using a neuronal cell line and primary cultures of cortical rat neurons, we identify the mammalian target of rapamycin pathway involvement in a signaling interaction between OPN-β1-integrins and the HIV-1 envelope glycoprotein, which stimulates neurite growth. These findings link for the first time HIV X4-envelope receptor engagement and osteopontin-mediated signaling through β1-integrin receptors to the mTOR pathway and alterations in the cytoskeleton of cortical neurons.

DOI: 10.1007/s13365-019-00729-y
PubMed: 30758811
PubMed Central: PMC6647884


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Osteopontin counters human immunodeficiency virus type 1-induced impairment of neurite growth through mammalian target of rapamycin and beta-integrin signaling pathways.</title>
<author>
<name sortKey="Calvez, Mathilde" sort="Calvez, Mathilde" uniqKey="Calvez M" first="Mathilde" last="Calvez">Mathilde Calvez</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Biology, Ecole Normale Superieure de Lyon, Lyon, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Department of Biology, Ecole Normale Superieure de Lyon, Lyon</wicri:regionArea>
<placeName>
<region type="region">Auvergne-Rhône-Alpes</region>
<region type="old region">Rhône-Alpes</region>
<settlement type="city">Lyon</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hseeh, George" sort="Hseeh, George" uniqKey="Hseeh G" first="George" last="Hseeh">George Hseeh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 6-119, Baltimore, MD, 21287, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 6-119, Baltimore, MD, 21287</wicri:regionArea>
<wicri:noRegion>21287</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Benzer, Simon" sort="Benzer, Simon" uniqKey="Benzer S" first="Simon" last="Benzer">Simon Benzer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 6-119, Baltimore, MD, 21287, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 6-119, Baltimore, MD, 21287</wicri:regionArea>
<wicri:noRegion>21287</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Brown, Amanda M" sort="Brown, Amanda M" uniqKey="Brown A" first="Amanda M" last="Brown">Amanda M. Brown</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 6-119, Baltimore, MD, 21287, USA. abrown76@jhmi.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 6-119, Baltimore, MD, 21287</wicri:regionArea>
<wicri:noRegion>21287</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30758811</idno>
<idno type="pmid">30758811</idno>
<idno type="doi">10.1007/s13365-019-00729-y</idno>
<idno type="pmc">PMC6647884</idno>
<idno type="wicri:Area/Main/Corpus">000340</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000340</idno>
<idno type="wicri:Area/Main/Curation">000340</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000340</idno>
<idno type="wicri:Area/Main/Exploration">000340</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Osteopontin counters human immunodeficiency virus type 1-induced impairment of neurite growth through mammalian target of rapamycin and beta-integrin signaling pathways.</title>
<author>
<name sortKey="Calvez, Mathilde" sort="Calvez, Mathilde" uniqKey="Calvez M" first="Mathilde" last="Calvez">Mathilde Calvez</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Biology, Ecole Normale Superieure de Lyon, Lyon, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Department of Biology, Ecole Normale Superieure de Lyon, Lyon</wicri:regionArea>
<placeName>
<region type="region">Auvergne-Rhône-Alpes</region>
<region type="old region">Rhône-Alpes</region>
<settlement type="city">Lyon</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hseeh, George" sort="Hseeh, George" uniqKey="Hseeh G" first="George" last="Hseeh">George Hseeh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 6-119, Baltimore, MD, 21287, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 6-119, Baltimore, MD, 21287</wicri:regionArea>
<wicri:noRegion>21287</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Benzer, Simon" sort="Benzer, Simon" uniqKey="Benzer S" first="Simon" last="Benzer">Simon Benzer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 6-119, Baltimore, MD, 21287, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 6-119, Baltimore, MD, 21287</wicri:regionArea>
<wicri:noRegion>21287</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Brown, Amanda M" sort="Brown, Amanda M" uniqKey="Brown A" first="Amanda M" last="Brown">Amanda M. Brown</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 6-119, Baltimore, MD, 21287, USA. abrown76@jhmi.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 6-119, Baltimore, MD, 21287</wicri:regionArea>
<wicri:noRegion>21287</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of neurovirology</title>
<idno type="eISSN">1538-2443</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>AIDS Dementia Complex (metabolism)</term>
<term>Animals (MeSH)</term>
<term>Cells, Cultured (MeSH)</term>
<term>HIV-1 (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Integrin beta Chains (metabolism)</term>
<term>Neurites (metabolism)</term>
<term>Neurites (virology)</term>
<term>Osteopontin (metabolism)</term>
<term>Rats (MeSH)</term>
<term>Signal Transduction (physiology)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
<term>env Gene Products, Human Immunodeficiency Virus (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Cellules cultivées (MeSH)</term>
<term>Chaines bêta des intégrines (métabolisme)</term>
<term>Démence associée au SIDA (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Neurites (métabolisme)</term>
<term>Neurites (virologie)</term>
<term>Ostéopontine (métabolisme)</term>
<term>Produits du gène env du virus de l'immunodéficience humaine (MeSH)</term>
<term>Rats (MeSH)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
<term>Transduction du signal (physiologie)</term>
<term>VIH-1 (Virus de l'Immunodéficience Humaine de type 1) (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Integrin beta Chains</term>
<term>Osteopontin</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>AIDS Dementia Complex</term>
<term>Neurites</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Chaines bêta des intégrines</term>
<term>Démence associée au SIDA</term>
<term>Neurites</term>
<term>Ostéopontine</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Neurites</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Neurites</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cells, Cultured</term>
<term>HIV-1</term>
<term>Humans</term>
<term>Rats</term>
<term>env Gene Products, Human Immunodeficiency Virus</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cellules cultivées</term>
<term>Humains</term>
<term>Produits du gène env du virus de l'immunodéficience humaine</term>
<term>Rats</term>
<term>VIH-1 (Virus de l'Immunodéficience Humaine de type 1)</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Despite the fact that human immunodeficiency virus type 1 (HIV-1) does not enter or replicate in neurons, its infection of a subset of resident brain glia cells (microglia and astrocytes) induces via disparate mechanisms, dysregulation of glutamate metabolism, neurotoxicity, and inflammation. Antiretroviral therapies suppress viral load, but cellular activation and release of proinflammatory factors, some of which is likely related to viral reservoirs, continue to promote a microenvironment that is injurious to neurons. However, the molecular mechanisms remain to be identified. Osteopontin (OPN) is a proinflammatory cytokine-like, extracellular matrix protein that is elevated within the brain and CSF in several neurodegenerative disorders, including HIV-associated cognitive disorder. However, the impact of elevated OPN on neuronal integrity and function in HIV-infected individuals who exhibit cognitive dysfunction remains unknown. In this study, using a neuronal cell line and primary cultures of cortical rat neurons, we identify the mammalian target of rapamycin pathway involvement in a signaling interaction between OPN-β1-integrins and the HIV-1 envelope glycoprotein, which stimulates neurite growth. These findings link for the first time HIV X4-envelope receptor engagement and osteopontin-mediated signaling through β1-integrin receptors to the mTOR pathway and alterations in the cytoskeleton of cortical neurons.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30758811</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>09</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1538-2443</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>25</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2019</Year>
<Month>06</Month>
</PubDate>
</JournalIssue>
<Title>Journal of neurovirology</Title>
<ISOAbbreviation>J Neurovirol</ISOAbbreviation>
</Journal>
<ArticleTitle>Osteopontin counters human immunodeficiency virus type 1-induced impairment of neurite growth through mammalian target of rapamycin and beta-integrin signaling pathways.</ArticleTitle>
<Pagination>
<MedlinePgn>384-396</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s13365-019-00729-y</ELocationID>
<Abstract>
<AbstractText>Despite the fact that human immunodeficiency virus type 1 (HIV-1) does not enter or replicate in neurons, its infection of a subset of resident brain glia cells (microglia and astrocytes) induces via disparate mechanisms, dysregulation of glutamate metabolism, neurotoxicity, and inflammation. Antiretroviral therapies suppress viral load, but cellular activation and release of proinflammatory factors, some of which is likely related to viral reservoirs, continue to promote a microenvironment that is injurious to neurons. However, the molecular mechanisms remain to be identified. Osteopontin (OPN) is a proinflammatory cytokine-like, extracellular matrix protein that is elevated within the brain and CSF in several neurodegenerative disorders, including HIV-associated cognitive disorder. However, the impact of elevated OPN on neuronal integrity and function in HIV-infected individuals who exhibit cognitive dysfunction remains unknown. In this study, using a neuronal cell line and primary cultures of cortical rat neurons, we identify the mammalian target of rapamycin pathway involvement in a signaling interaction between OPN-β1-integrins and the HIV-1 envelope glycoprotein, which stimulates neurite growth. These findings link for the first time HIV X4-envelope receptor engagement and osteopontin-mediated signaling through β1-integrin receptors to the mTOR pathway and alterations in the cytoskeleton of cortical neurons.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Calvez</LastName>
<ForeName>Mathilde</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, Ecole Normale Superieure de Lyon, Lyon, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hseeh</LastName>
<ForeName>George</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 6-119, Baltimore, MD, 21287, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Benzer</LastName>
<ForeName>Simon</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 6-119, Baltimore, MD, 21287, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brown</LastName>
<ForeName>Amanda M</ForeName>
<Initials>AM</Initials>
<Identifier Source="ORCID">0000-0002-4576-9636</Identifier>
<AffiliationInfo>
<Affiliation>Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 6-119, Baltimore, MD, 21287, USA. abrown76@jhmi.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 NS102006</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 MH095646</GrantID>
<Acronym>MH</Acronym>
<Agency>NIMH NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R25 MH080661</GrantID>
<Acronym>MH</Acronym>
<Agency>NIMH NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>02</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Neurovirol</MedlineTA>
<NlmUniqueID>9508123</NlmUniqueID>
<ISSNLinking>1355-0284</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D039641">Integrin beta Chains</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054299">env Gene Products, Human Immunodeficiency Virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>106441-73-0</RegistryNumber>
<NameOfSubstance UI="D053495">Osteopontin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D015526" MajorTopicYN="N">AIDS Dementia Complex</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015497" MajorTopicYN="N">HIV-1</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D039641" MajorTopicYN="N">Integrin beta Chains</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016501" MajorTopicYN="N">Neurites</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053495" MajorTopicYN="N">Osteopontin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054299" MajorTopicYN="N">env Gene Products, Human Immunodeficiency Virus</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Cytoskeleton</Keyword>
<Keyword MajorTopicYN="Y">Dendrites</Keyword>
<Keyword MajorTopicYN="Y">HIV-associated neurocognitive disorder</Keyword>
<Keyword MajorTopicYN="Y">Integrins</Keyword>
<Keyword MajorTopicYN="Y">Neurons</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>10</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>01</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>01</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30758811</ArticleId>
<ArticleId IdType="doi">10.1007/s13365-019-00729-y</ArticleId>
<ArticleId IdType="pii">10.1007/s13365-019-00729-y</ArticleId>
<ArticleId IdType="pmc">PMC6647884</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Neurosci. 1999 Mar 1;19(5):1541-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10024342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2000 Sep 1;20(17):6551-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10964960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Apr 19;410(6831):988-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11309629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 May 17;411(6835):317-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11357135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2001 Nov;75(21):10073-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11581376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Mar 28;416(6879):442-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11919635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2002;18:601-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12142283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Sep 20;110(6):673-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12297042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2004 Jul;78(13):6915-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15194768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2005 Dec 7;25(49):11300-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16339025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2006 Jan 4;26(1):223-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16399691</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2006 Feb 8;26(6):1813-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16467530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Apr 4;103(14):5579-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16567651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2007 Feb;14(2):296-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16841089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosci. 2006 Oct 25;26(43):11208-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17065460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurosci. 2007 Jan;8(1):33-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17180161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Leukoc Biol. 2007 Jun;81(6):1504-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17369493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurology. 2007 Oct 30;69(18):1789-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17914061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Biosci. 2008 Jan 01;13:2484-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17981728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Mar 14;283(11):6997-7006</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18174176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2008 Sep 1;198(5):715-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18616394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2009 Mar;29(6):1411-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19114562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurobiol Dis. 2010 Mar;37(3):542-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20044002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Matrix Biol. 2010 Jun;29(5):369-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20385232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Neurol. 2010 Jun;67(6):699-714</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20517932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Physiol. 2010 Sep 15;588(Pt 18):3349-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20530112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Neurosci. 2010 Aug;32(4):570-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20670282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2010 Oct 15;185(8):4883-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20855878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2010 Nov;13(11):1388-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20935643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurology. 2010 Dec 7;75(23):2087-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21135382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurovirol. 2011 Feb;17(1):3-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21174240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Behav Neural Biol. 1990 Jan;53(1):1-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2154174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurovirol. 2011 Aug;17(4):382-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21556958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pharmacol. 2011 Sep;80(3):357-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21670103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stroke. 2011 Aug;42(8):2294-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21700938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurotox Res. 2012 Jan;21(1):79-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21948112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Retrovirology. 2012 Mar 15;9:20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22420378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurovirol. 2012 Aug;18(4):291-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22653528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroreport. 2012 Aug 1;23(11):647-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22692550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Aug 31;287(36):30240-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22810227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Jul;9(7):671-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22930834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2013 Jan 1;126(Pt 1):77-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23015592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transl Neurosci. 2012 Feb 1;3(3):288-293</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23565338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Neurobiol. 2013 Jul-Aug;106-107:1-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23583307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2013;1078:9-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23975817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 1986 Sep 20;2(8508):660-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2429124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mediators Inflamm. 2014;2014:358218</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25525298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurovirol. 2015 Apr;21(2):174-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25636782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 2015 Mar 18;85(6):1244-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25754821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stem Cell Res Ther. 2015 May 22;6:99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25998490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin HIV AIDS. 2016 Mar;11(2):226-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26760827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunol Today. 1989 Jul;10(7):239-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2679637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Neurol. 2016 Apr;12(4):234-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26965674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuroscience. 2017 Jan 26;341:112-153</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27889578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 Nov;86(21):8575-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2813413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2017;587:405-428</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28253969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2017 Mar 9;168(6):960-976</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28283069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Neurosci. 2018 Jun;21(6):799-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29786082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 Jan 13;367(6459):188-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8114918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1997 Feb 17;185(4):621-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9034141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1998 May 7;8(10):595-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9601645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14500-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9826729</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
<li>États-Unis</li>
</country>
<region>
<li>Auvergne-Rhône-Alpes</li>
<li>Rhône-Alpes</li>
</region>
<settlement>
<li>Lyon</li>
</settlement>
</list>
<tree>
<country name="France">
<region name="Auvergne-Rhône-Alpes">
<name sortKey="Calvez, Mathilde" sort="Calvez, Mathilde" uniqKey="Calvez M" first="Mathilde" last="Calvez">Mathilde Calvez</name>
</region>
</country>
<country name="États-Unis">
<noRegion>
<name sortKey="Hseeh, George" sort="Hseeh, George" uniqKey="Hseeh G" first="George" last="Hseeh">George Hseeh</name>
</noRegion>
<name sortKey="Benzer, Simon" sort="Benzer, Simon" uniqKey="Benzer S" first="Simon" last="Benzer">Simon Benzer</name>
<name sortKey="Brown, Amanda M" sort="Brown, Amanda M" uniqKey="Brown A" first="Amanda M" last="Brown">Amanda M. Brown</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000265 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000265 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30758811
   |texte=   Osteopontin counters human immunodeficiency virus type 1-induced impairment of neurite growth through mammalian target of rapamycin and beta-integrin signaling pathways.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30758811" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020